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Abstract

The Mixture-of-Experts provides a classical framework for doing non-linear learning in an interpretable
fashion. The framework combines simple experts, who handle a subset of domain (governed by the
gating network). However, the constraint of using probabilistic experts restricts the experts which can be
leveraged in this setting. Moreover, with slightly sophisticated experts, the inference procedures become
slow and complex, often requiring multiple embedded iterative procedure. In this work, we leverage
recently developed latent-variable augmentation techniques to design efficient inference procedures for
sophisticated Mixture-of-Experts. Our models yield competitive/better classification accuracies on various
binary classification datasets.

1 Introduction

1.1 Mixture of Experts

Mixture of Experts [8] is a simple yet extremely effective way to learn non-linear models by combining
locally linear models (the setup is general enough to incorporate non-linear experts as well, for example
Gaussian Processes [11]). Mixture of experts model has been widely studied and used as well [10, 24]. The
idea behind mixture of experts, in its simplest form, is to break a highly non-linear problem into a set of
simpler problems, each of which is handled by an expert for that subset of input. Therefore, there are two
fundamental components of Mixture of Experts: Experts which handle the simpler sub-problem and a Gating
Network which assigns each input to an expert. A smooth introduction to the topic of mixture of experts is
given in [12].

Mathematically, assume that we that our input x is in RD, and we have continuous labels y in R. In the most
frequent case, we define a gating network V ∈ RK×D, where K is the number of experts, as V = {vk}Kk=1.
Consequently, we defines the probability of choosing the expert k as πk(x) = fk(x, V ), where fk(x, V ) is a

valid probability, that is 0 ≤ fk(x, V ) ≤ 1 and
∑K
k=1 fk(x, V ) = 1 ∀x ∈ RD. Next, in the most frequent case,

we define our experts W ∈ RD×K as W = {wk}Kk=1. For the simple linear case, the prediction is usually
ŷk = wTk x. More generally, ŷk = gk(wk, x). Note, the prediction for expert k cannot depend on the other
experts. The final prediction is given by ŷ =

∑
k=1 πk(x)gk(wk, x). Alternately, we can use predicted value

from the most probable expert. The former is unbiased while the latter is cheap to compute.

Given a dataset D = {xi, yi}Ni=1, we generally employ Expectation Maximization (EM) to learn the
parameters V,W . To this extent, we introduce the categorical latent variable Z = {zi}Ni=1. Here, zi is a
one-hot vector which denotes the expert making the prediction for xi. The complete log-likelihood is defined
as follows:

L(y, Z|X,W, V ) =

N∑
i=1

log p(yi, zi|xi,W ) =

N∑
i=1

K∑
j=1

1[zij = 1]
(

log p(yi|xi, wj) + log p(zij = 1|xi, V )
)

(1)

Here, we employ the conventional notation X = {xi}Ni=1, y = {yi}i=1N . Here, p(yi|xi, wj) denotes the proba-
bility/likelihood of label yi, and p(zij = 1|xi, V ) represents the probability of expert j which is simply πk(x).
The equation above shows why our experts need to have a probabilistic interpretation, and why powerful
experts like Support Vector Machines (SVM) [3] cannot be used directly. Next, we construct the expected
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complete log-likelihood, as is traditional in EM, denoted by Ez[L(y, Z|X,W, V )]. Here, the expectation is
taken with respect to p(z|y,X, V (t),W (t)).

This concludes a generic overview of mixture-of-experts. The specific details depend upon the architectural
choice of gating networks and experts. While there are a multitude of such choices possible for gating archi-
tectures, we can broadly divide them into two categories which gives rise to two distinct “mixture-of-experts”
models: Flat Mixture-of-Experts and Hierarchical Mixture-of-Experts [9]. Representative images of both have
been shown below:

Figure 1: An illustration of a Flat Mixture-of-Experts model (top) [8] and a Hierarchical Mixture-of-Experts
(bottom) [9]
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Both of these models have been immensely popular. While effectively both represent similar mathematical
formulations, the decision boundaries learnt by these two models are very different and thus depending upon
the problem, one of them might perform better. More details on these architectures are provided later. While
initially proposed for regression, these models have been adapted for classification as well [12,24]. There are
several reasons for the success of these models, especially when compared to kernel based approaches to
non-linear learning [19,21]:

• A probabilistic formulation makes a fully Bayesian treatment possible, for example [2].

• They are highly interpretable, unlike the several kernel based alternatives. The interpretability arises
from the gating architectures, which informs us which “specific” expert is responsible for the prediction
given the input.

• Being parametric models, they are faster at both train and test times. While training Kernel based
models is hard, they usually scale in the size of training data at test time as well (though approximate
inference is possible).

There are still a few shortcomings for mixture-of-experts models though.

• As alluded to earlier, the requirement that experts be probabilistic excludes powerful experts like SVMs
and Neural Networks (NN). Approximate procedures might be possible, but this usually complicates
and slows down inference. There are successful application with such non-probabilistic experts, for
example the very recent [20]. However, such applications generally resort to heuristics for training.

• Even with probabilistic experts, having closed form updates in E and M steps is extremely rare. Even
in rudimentary setups, such as a softmax gating network and probabilistic linear regressors as experts,
the training procedure has to resort to iterative procedures, like Iteratively Reweighted least Squares
(IRLS) or Gradient Descent, within the EM iterations [8]. A shining exception, developed to avoid
this very limitation, is [23]. While we will discuss these models again in the upcoming sections, the
embedded iterative procedures are not only slow, they increase the hyperparameters to be tuned and
often converge sub-optimally.

In this work, we try to address a few of the shortcomings, in particular the second shortcoming. We leverage
some of the advances in probabilistic formulation using latent-variable augmentation techniques, which are
described next.

1.2 Gaussianizing Objectives using Latent-Variable Augmentation

Gaussian distribution is arguably the most recurring entity in Probabilistic Machine Learning, and Statistics
in general. Besides being a useful modelling tool and having Central Limit Theorem to back it up, Gaussians
have well understood properties, are easily manipulatable, are self-conjugate and often yield closed form
solutions. Thus, we often try to manipulate likelihood functions, which are either intractable otherwise
or inherently non-probabilistic, into Gaussian likelihoods using latent variable augmentation. One classic
example is Gaussian Mixture Model (GMMs). Recall that to learn GMMs, latent variables are introduces
such that likelihood for every data point becomes a Gaussian. This considerably simplifies the otherwise
intractable inference. This technique of “Gaussianizing” is at the heart of [23], the first work to provide
closed form updates in both E and M steps. They essentially switch to GMM like generative gating network
which allows them to make the Gating Network conjugate with Probabilistic Linear Regression experts,
which were modelled as Gaussians themselves. For our work, we will leverage two such recently introduced
latent-variable augmentation techniques.

1.2.1 Bayesian Support Vector Machines

Support Vector Machines [3] (SVM) became the de-facto blackbox algorithm in machine learning due
to their immense efficacy on binary classification tasks. The kernel trick [17] and fundamental extensions
beyond binary classification [5, 21] perpetuated their popularity. However, there are some drawbacks to the
SVM formulation. Being a discriminative model, there are no obvious ways to choose a kernel and tune its
hyperparameters without cross validation, which can be computationally expensive. This difficulty, along
with typical shortcomings of a discriminative model, can be countered easily with a Bayesian formulation.
Bayesian SVM, proposed in [15], provided the aforementioned Bayesian formulation for SVMs using data
augmentation.
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Formally, assume a dataset D = {xi, yi}Ni=1. Our aim is to learn a weight vector w such that the objec-
tive

L(w,R) =

N∑
i=1

max(1− yixTi w, 0) +R(w) (2)

is minimized. Here, R(w) represents some regularizer. Assume R(w) = λ||w||2
4 , although the formulation

extends to much more general regularizers, as described in [15]. Minimizing (2) is equivalent to finding the

mode of p(w|λ,D) ∝ p(w|λ)
∏N
i=1 L(yi|w, xi) ∝ exp(−2L(w,R)) for the following definitions:

p(w|λ) = N (0, λ−1I) (3)

L(yi|w, xi) = exp(−2 max(1− yixTi w, 0)) (4)

p(w|λ) represents the prior and L(yi|w, xi) defines the pseudo-likelihood. The fundamental contribution
of [15] was to decompose (4) into a location-scale mixture of normals. To be more precise, [15] shows that:

L(yi|w, xi) =

∫ ∞
0

1√
2πγi

exp(−1

2

(1 + γi − yixTi w)2

γi
)dγi (5)

(5) inspires the data augmentation scheme. Essentially, γi is augmented for every data point xi, which
converts the likelihood function into a Gaussian distribution (hence, the “Gaussianization”). Therefore,
define L(yi, γi|w, xi) = N (1 − yixTi wi| − γi, γi). Now, with augmentation, we want to maximize/estimate

the posterior p(w, γ|λ,D) ∝ p(w|λ)
∏N
i=1 L(yi, γi|w, xi). Since γ itself is unknown, we again resort to tools

like Expectation Maximization (EM) or Markov Chain Monte Carlo (MCMC) methods, as has been
show in [13,15]. [13], in particular, goes onto show multiple extensions for Bayesian SVMs such as Multiclass
SVMs, Nonlinear Kernel SVMs and Support Vector Regression.

1.2.2 Polya-Gamma Augmentation

Bayesian analysis has long utilized the probit model for analysis of binary data. This can be attributed to a
simple latent variable augmentation [1]. However, such a counterpart was missing for a long time for logistic
regression models. Consider the following logistic regression model for binary data yi ∈ {0, 1} for feature
vector xi ∈ RD,

yi ∼ Bern(wi) (6)

wi =
1

1 + exp(−xTi w)
(7)

where w ∈ RD is the weight vector to be inferred. Due to the non-conjugacy of the likelihood model, a
Bayesian analysis is extremely inefficient. To solve this problem, [14] introduced the Polya-Gamma latent-
variable augmentation technique, which essentially transformed the logistic regression likelihood model to a
Gaussian likelihood, thus enabling an efficient and full Bayesian treatment of Logistic Regression. Later, [18]
showed how to use the Polya-Gamme latent-variable routine in an EM algorithm. The fundamental result
shown by [14] was: (

eψ
)a(

1 + eψ
)b = 2−be(a−b/2)ψ

∫ ∞
0

e−βψ
2/2p(β)dβ (8)

where p(β) represents the density of β ∼ PG(b, 0) and PG stands for Polya-Gamma distribution. Clearly, if
β is “known”, the logit likelihood (for a = b = 1) will become a Gaussian Likelihood Model. Thus, we can
derive a EM routine which assumes β as latent variables (alternately, a MCMC routine, in particular Gibbs
Sampling, if required).

Leveraging the latent-variable augmentation schemes described above, we will now present some novel Mixture
of Experts architectures, all of which have efficient inference routines. Our architectures will extensively
leverage Bayesian SVMs (largely as experts). Thus, our work can also be interpreted as an alternate way to
do non-linear learning with SVMs (in contrast to Kernel based methods). These are more efficient in both
train and test time, and are highly interpretable

4



2 Model Architectures

We propose a Mixture of Experts (MoE) based model, where the experts are Bayesian SVMs. We restrict
ourselves to binary classification tasks, however, extension to multi-class classification and regression should
follow in a fairly similar manner. As a general motivation for this formulation, we provide the following
reasons:

• Bayesian SVMs preserve the maximum margin separation properties which made SVMs popular. Thus,
Bayesian SVMs can be effective linear models solving the binary classification task for a subset of the
input assigned to it by the gating network.

• The mixture-of-experts formulation leverages the probabilistic interpretation of SVMs, thus allowing
an ensemble of SVMs to be constructed in a systematic and interpretable fashion.

• The models can be trained very efficiently using EM (the detailed derivations have been shifted to the
appendix). In our later architectures, we show a formulation such that both E step and M step have
closed form updates.

Assuming the number of experts to be K (this can be learnt from the data itself) our MoE formulation uses
K Bayesian SVMs defined by the set of weight vectors W = {wi}Ki=1 where wk denotes the weight vector of
the kth Bayesian SVM expert. Following Eq. (5), given the latent variable zi ∈ {1, . . . ,K} denoting which
expert the the input xi has been assigned to, the Bayesian SVM conditional probability p(yi|xi, zi = k, γik)
of the label yi, given input xi can be written as

p(yi|xi, wk, γik) = N (1− yiwTk xi| − γik, γik) (9)

The expectations of the latent variables zik and γik, given the current estimates Ŵ and V̂ of MoE model
parameters, can be computed in closed form [15] as follows:

ηij = E[zij ] ∝ p(yi|ŵk, xi, γij)p(zij = 1|xi, V̂ ) (10)

τik = E[γ−1
ik ] = |1− yiŵTk xi|−1 (11)

Note that, in (10), the form of p(zik = 1|xi, V̂ ) will depend on the architecture of the gating network.
The exact likelihood construction, updates for parameters and latent variables have been discussed in the
respective sections (and appendices). Next, we will discuss the architectures for gating networks. The
following discussion will be restricted to Flat Mixture of Experts, which will be followed up by a relevant
construction of Hierarchical Mixture of Experts.

2.1 Flat Mixture of Experts

2.1.1 Naive Softmax Gating Network

For the first model, we follow [8] and construct a softmax gating network. The experts as stated before,
are Bayesian SVMs. For a setting with K experts, V = {vi}Ki=1 denotes the gating network matrix. The

probability of expert k is given by πk(x) =
exp(vTi x)∑K
l=1 exp(vTl x)

The detailed derivations, along with updates, are

provided in Appendix A.1. There is one major drawback in this approach: There are no closed form updates
for gating network. This point is emphasized in the derivation as well. This arises because of the use of
softmax gating network, which couples all the gating vectors. This was identified in [8], which uses Iterative
Reweighted Least Squares (IRLS) to solve for gating network. We propose to use the simpler gradient descent
to solve for the gating network, the required gradient derivation for which has been provided. The problem
is slightly alleviated by the fact that we do not have to train the softmax gating to convergence. For EM to
converge, we only need to take a few gradients steps to make our ‘softmax’ network better. Thus, we only
take a fixed number of steps along the direction of the gradient in every maximization step. Nonetheless, an
iterative procedure within an iterative procedure is not a desirable feature of this model, as it increases the
number of hyperparameters to tune.

2.1.2 Generative Gating Network

The problem of having an iterative procedure (IRLS for softmax gates) within an iterative procedure (EM)
was identified and solved in [23] using the generative gates. In context of our formulation, we make the
following changes:
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• Use generative gates: Instead of using the softmax function to map the input to an expert, we use a
generative model (similar in spirit to Gaussian Mixture Models) to decide to the expert. In particular,
the probability of jth expert being assigned any input x is given by p(j|x, V ) ∝ αjp(x|j, V ) where αj
is the prior probability and p(x|j, V ) = N (µj ,Σj). Therefore, the new set of parameters for the gating
network is V = {αk, µk,Σk}Kk=1.

• Maximize Ep(γ,z|W (t),V (t),D)[log p(y, x, γ, z|V,W )]: Maximizing the original objective will again require
an iterative procedure for the M step. A new objective is proposed in this model, which when used,
provides closed form updates for both the E and M step.

For a detailed discussion on why the above two steps are required, refer to [23]. The derivations and the
updates are provided in the Appendix section A.2.1.

2.1.3 Pólya-Gamma Augmented Softmax Gating Network

We revert back to the softmax gating network. However, in this construction we will introduce Pólya-Gamma
augmentation to the gating network vectors, which will allow us to get closed form updates for the weight
vectors V = {vk}Kk=1, where each vi ∈ RD. The expert assignment probability is again πk(xi) = p(zik =

1|xi, V ) =
exp(vTk xi)∑K
l=1 exp(vTl xi)

. For training input xi, we will augment latent variables βij ∼ PG(0, 1) where PG

stands for Pólya-Gamma distributions and j ∈ {1, . . .K}. Consequently, using the results from [14], we get

log p(zik = 1|xi, βik, V ) ∝ ψik
2
− βik

ψ2
ik

2
(12)

E[βik] = 0.5ψ−1
ik tanh(0.5ψik) (13)

where ψik = xTi vk − log
∑K
l=1,l 6=k exp(xTi vl). The detailed derivation has been given in section A.2.2.

2.1.4 Logistic Stick Breaking Prior Gating Network with Pólya-Gamma Augmentation

The fourth gating network is based on a logistic stick-breaking prior [16] (LSBP). One of the appealing
properties of this construction for the gating network is that it enables us to learn the “right” number of
experts from data and the stick breaking prior provides a non-parametric construction for the same [16]. Our
LSBP construction specifies a large-enough truncation level on the number of experts and the model has the
ability to determine the number of experts by automatically pruning the unnecessary experts, as warranted
by the data. The LSBP gating network construction defines the probability of an input xi assigned to an
expert k as follows:

πk(xi) = νk(xi)

k−1∏
l=1

(1− νl(xi)) (14)

where νk(xi) = 1
(1+exp(−vTk xi))

. Note that the LSBP construction is somewhat akin to the softmax due to the

way the stick weights νk(xi) are defined. As a result, estimating the model parameter does not have a closed
form, again requiring iterative methods. However, we can again leverage the Pólya-gamma latent variable
augmentation described and used earlier. Therefore, for this construction, we again introduce a set of latent
variables β = {βik}i=N,k=K

i=1,k=1 where βik ∼ PG(b, 0). The set of parameters to be learned in the LSBP gating

network are V = {vi}Ki=1, and

log p(zik = 1|xi, βi, V ) =
v>j xi

2
−
k−1∑
l=1

v>l xi
2

k∑
l=1

βil
(v>l xi)

2

2
(15)

This expression is substituted in the expression of the complete data log-likelihood. Just like the softmax
case, here again, the required expectation of PG variables are available in closed form [14] and are given by

χik = E[βik] = (2v̂Tk xi)
−1 tanh(0.5v̂Tk xi) (16)

The parameter updates, resulting from maximization of expected complete data log-likelihood, are given by:

v̂k = (X>ΩkX + ρI)−1X>(κ̂1k, . . . , κ̂Nk)T

κ̂ik = ηik − 0.5

K∑
l=k

ηil

Ω̂k = diag(χ1k

K∑
l=k

η1l, . . . , χNk

K∑
l=k

ηNl)

(17)
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Here, ρ is the hyperparameter from the prior distribution on νk. The derivations largely resemble those
performed in [16], and therefore are skipped here from the discussion for brevity.

2.2 Hierarchical Mixture of Experts

We will now shift our attention to Hierarchical Mixture of Experts (HMoE). HMoEs were first presented
in [9], as an alternate to Generative Gating/Softmax gating based Flat Mixture of Experts. As is the con-
vention, we will predefine the structure of the HMoE model to be full binary tree, as is the case in [9]. The
leaf nodes in such a tree correspond to the “expert” nodes of a Flat MoE, where the rest of the tree acts as
a gating network. There is a weight vector associated with every node in the tree. In this work, since we are
dealing with binary classification tasks, every node of the tree essentially has a binary classification problem.
The internal nodes decide which route to take (and hence the expert), whereas the final experts decide the
final label. Ofcourse, all of this is done in a probabilistic fashion and therefore, each expert gets a weight
depending upon the probability assigned to that path by the internal nodes. Since, all the nodes essentially
have a binary classification task, this gives us an opportunity to convert all nodes in the tree to a Bayesian
SVM! Up until now, we had restricted the Bayesian SVM formulation to the experts. However, in HMoE, we
can even construct internal nodes/gating network using Bayesian SVMs. This Bayesian SVM construction
would be valid even if the tree was not binary, as we can always use a multi-class version of Bayesian SVM [13].

w1

w2 w3

w4 w5 w6 w7

Figure 2: An instance of HMoE

The notation for HMoEs can get extremely cumbersome. Therefore, for simplicity of discussion assume that
the HMoE has the structure as drawn in Figure 2. Also, assume that all classification labels are {0, 1},
contrary to the previous discussions where the labels were {−1,+1}. Here, w1, w2, w3 play the role of “gating
network”, whereas w4, w5, w6, w7 are the experts. Here, W = {wi}7i=1 play a dual role, where they identify
the node in the tree as well as represent the weight vector. At test time, if an internal node predicts 0,
we go left, otherwise we go right. If we do things in a probabilistic fashion, we get the following recursive
probability rule for every expert [Note the divisions are assumed to be integer divisions for the rest of the
discussion]:

p(zij = 1|xi,W ) ∝ p(j%2|xi, wi j2 )p(zi j2
= 1|xi,W ) (18)

Here, zij = 1 denotes the event that jth node was chosen along the path to an expert. Also, p(y|xi, wj) ∝
exp(−2 max(0, 1− 2(y− 1)wTj xi)), where the final probability is computed after normalization with all other
nodes at that level.

Clearly, the variable zij are unknown. Therefore, these are assumed to be latent for inference. Typically, a
Bayesian SVM weight vector is augmented with one latent variable for every example. Here, every internal
node of the tree is augmented with two latent variables per example, that is γ0

ij , γ
+1
ij for ith training example

and jth weight vector where j ∈ {1, 2, 3}. This peculiarity happens because in all previous constructions the
output label was known with certainity, whereas the “true” path for every example is latent, and can only
be assigned certain probability (as is typical in EM). Therefore, the internal nodes predict both the labels
with those probabilities and therefore, two augmentations are needed for every input in training data. Note,
the leaf nodes only have one augmentation per training data point, that is γij for j ∈ {4, 5, 6, 7}, because the
true labels are known. Now, define

γ
(k)
i = {γpij |p ∈ {0, 1}, j ∈ [2k, 2k+1 − 1] ⊂ Z} (19)

Essentially, γ
(k)
i refers to the set of Bayesian SVM latent variables at level k, where root node is level 0. Now,
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again the following recursive definitions hold:

p(zij = 1, γ
dlog( j

2 )e
i |xi,W ) = p(j%2, γj%2

i j2
|w2, xi)p(zi j2

= 1, γ
dlog( j

4 )e
i |xi,W ) (20)

ηij = E[zij ] = p(zij = 1|yi, xi,W (t)) ∝ p(yi|xi, w(t)
j )p(zij = 1|xi,W (t)) (21)

Now, recall that expected complete log-likelihood function looks as the follows:

L(y, Z, γ|X,W ) = log p(y, γ, β, Z|X,W )

=

N∑
i=1

7∑
j=4

1[zij = 1]
(

log p(yi, γij |wj , xi) + log p(zij = 1, γ
(1)
i |xi,W )

)
(22)

We can use the recursive formulas stated above to compute Ez,γ [L]. Before moving forward, let’s look at the
terms which depend on w2.

L(w2) =

N∑
i=1

ηi4 log p(−1, γ
(0)
i2 |xi, w2) + ηi5 log p(+1, γ

(1)
i2 |xi, w2) (23)

In fact, this can be generalized for all wi. Let ηi denote the sum of ηij for all expert nodes under that node
on turning left (for example w4 for w2) and η′i denote the sum of ηij for all expert nodes on turning right.
This definition holds for all wi. Also define,

τ
(0)
i = E[

(
γ

(0)
i

)−1
]−1 = |1 + xTi w| (24)

τ
(1)
i = E[

(
γ

(1)
i

)−1
]−1 = |1− xTi w| (25)

Such an abstraction simplifiest the results. Therefore,

L(w) =

N∑
i=1

N∑
i=1

ηi log p(−1, γ
(0)
i |xi, w) + η′i log p(+1, γ

(1)
i |xi, w) (26)

Now, solving this expression, we get the following updates (assuming a normal prior with 0 mean and
covariance λI):

w = (XTAX + λI)−1(

N∑
i=1

bixi) (27)

A = diag(a1, a2, . . . an) (28)

ai =
ηi

τ
(0)
i

+
η′i

τ
(1)
i

(29)

bi = (η′i − ηi) + (
η′i

τ
(1)
i

− ηi

τ
(0)
i

) (30)

Note that these updates reduce to the standard updates in other architectures for the leaf/expert nodes as
either η′i = 0 or ηi = 0 for all leaf nodes.

With these updates, the algorithm is a forward pass-backward pass kind of algorithm. In the forwards, all
the expectations are computed (E Step). In the backward pass, all the updates are executed (M Step). This
is also reflected in the recursive nature of updates for the E Step.

3 Experiments and Results

We experiment on several benchmark binary classification datasets comparing with several state-of-the-art
mixture of experts models. We consider 3 sets of benchmark datasets, based upon the recent relevant MoE
models we compare our model with. A brief descriptions of these datasets, compared models and experiment
settings are as follows:

• Set I: We first compare the results with the recently proposed MoE models, including the convex
polytope machine (CPM), stack-softplus and sum-stacked-softplus classification models proposed by
[25]. They propose a non-linear classifier by introducing a family of softplus functions, convolving
countably infinite stacked gamma distributions, and report state-of-the-art results on several benchmark
datasets, including
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Figure 3: Decision Boundary learnt by our model as the number of experts are increased from 1 to 50 (left
to right). Larger number of experts are able to generate increasingly non-linear decision boundary for the
banana dataset.

Dataset RBF-SVM RVM CPM SS-τ GG* LSBP* PG* HMoE
banana 10.85 (0.57) 11.08 (0.69) 21.39 (1.72) 11.89 (0.61) 10.60 (0.41) 11.53 (0.91) 25.45 (5.3) 15.59 (3.89)

waveform 10.73 (0.86) 11.16 (0.72) 12.76 (1.17) 11.69 (0.69) 9.41 (1.5) 19.1 (1.6) 8.93 (0.31) 12.19 (1.05)
image 2.84 (0.52) 3.82 (0.59) 3.25 (0.41) 2.73 (0.53) 3.1 (0.45) 3.65 (0.94) 10.43 (3.06) 6.49 (1.43)

breast cancer 28.44 (4.52) 31.56 (4.66) 32.08 (4.29) 28.83 (3.40) 21.04 (1.91) 21.56 (3.01) 23.12 (4.07) 24.91 (4.55)

Table 1: Comparison on datasets with numbers reported by [25]

– banana: This a 2-dimensional dataset that has a highly non-linear decision boundary. We qual-
itatively show how increasing number of expert are able to generate an increasingly non-linear
decision boundary in Figure 3.

– Waveform, image, breast cancer These datasets along with banana dataset are taken from [6]
(as is done in [25]).

These datasets have multiple predefined test and train splits. We use the first 10 splits and then report
results on them. The results are summarized in Table 1.

• Set II : We also directly compare with a Bayesian nonlinear SVM model [7] on the datasets reported
in their model. In their work, they propose a non-linear Bayesian SVM (BSVM) which use nonlinear
kernels, as compared to our proposed Mixture-of-Experts model for classification. We also compare with
the Gaussian Process based Classifier (GPC) as mentioned in their paper. For this set, the following
datasets are considered:

– Pima Diabetes Dataset It consists of Yes/No responses to the presence of diabetes in the
patients based upon 8 features.

– Sonar Dataset It consists of 208 instances where Sonar rays are bounced off ground to detect
rocks and mines.

– Wisconsin Dataset It consists of 682 instances of patients who are tested for breast cancer.

We use the same experimental conditions as the authors, dividing the dataset into 10 parts for a 10-Fold
Validation and then report the mean accuracies and std deviation.

• Set III: In [4], they proposed a technique to use an optimal number of support vectors while doing
non-linear classification with Kernels. Hence they aim to reduce the test times of their model with
lesser support vectors. While our model learns a set of sufficient statistics of the model and plugs them
in at test times. We call their model OSSVM for brevity.

– Adult Dataset and IJCNN They are the a8a and ijcnn1 dataset available on LIBSVM tools.

Both of these dataset have predefined test and training datasets on which we report the test error as
done in [4].

• Set IV Finally, we also consider the Small Variance Dirichlet Process Mixture SVM (M2DPM)
proposed by [22]. We use one of the two real datasets used by them, the Parkinsons disease dataset
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Figure 4: Left: Accuracies on the Parkinsons Dataset when compared with the Small Variance Dirichlet
Process Mixture SVM (M2DPM) proposed by [22] and allied models mentioned by them. Right : Plot
showing that the Stick Breaking Prior is indeed learning the number of experts as the accuracy stabilizes if
the number of experts is large enough. Legend format - Dataset:Model

which consists of 195 subjects that may or may not have the disease. For this too, we use a 10 Fold
Cross Validation and report the mean and standard deviation

Model Adult(a8a) IJCNN
OSSVM 15 4

14.75 1.8
SpSVM 14.6 6

14.6 2.5
RSVM 14.65 8

14.6 6
GG* 14.49 2.02

LSBP* 20.02 -
PG* 14.81 8.04

HMoE 15.30 4.36

Table 2: For OSSVM , SpSVM, RSVM we have two rows to report the errors with 1000 and 100 support
vectors, upper and lower respectively. Their errors are reported by reading the graph in [4] hence may be off
a little.
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A Appendix

A.1 MAP Estimate for a Mixture of Bayesian SVM Experts

Let Θ = {θg, θe} where θg = {vi}Ki=1 represents the vectors for gating network of K experts and θe = {wi}Ki=1

represent the weight vectors for K Bayesian SVMs, γi = {γi1, γi2, . . . γiD} represent the augmented represen-
tation for the ith Bayesian SVM construct and z represent the set of one-hot vectors allotting each input to
an expert. D = {X, y} denotes the training data as usual.

Here, γ and z act as the latent variables. As is the case with EM, instead of maximizing p(Θ|D), we
maximize E[log p(Θ, γ, z|D)] where expectation is with respect to p(γ, z|Θ(t), D). Now,

p(Θ, γ, z|D) ∝ p(Θ)p(y, γ, z|X,Θ)

⇒ log p(Θ, γ, z|D) ∝ log p(Θ) +

N∑
i=1

K∑
j=1

1[zij = 1](log p(zij = 1|xi, θg) + log p(yi, γij |xi, θe, zij = 1))

⇒ E[log p(Θ, γ, z|D)] ∝ log p(Θ) +

N∑
i=1

K∑
j=1

E[zij ](log p(zij = 1|xi, θg) + E[log p(yi, γij |xi, θe, zij = 1)]) (31)

There is an implicit assumption in this: The posterior expectation of zij does not depend on γ. In the current
setup, we are using the softmax gating. Using (4), we get:

E[zij ] = p(zij = 1|xi, yi,Θ(t))

∝ p(yi|xi, zij = 1,Θ(t)
e )p(zij |xi,Θ(t)

g )

∝ exp(−2 max(0, 1− yixTi w
(t)
j )) exp(xTi v

(t)
j )

⇒ E[zij ] =
exp(xTi v

(t)
j − 2 max(0, 1− yixTi w

(t)
j ))∑K

l=1 exp(xTi v
(t)
l − 2 max(0, 1− yixTi w

(t)
l ))

= ηij (32)

Now, onto the other expectation:

E[log p(yi, γij |xi, θe, zij = 1)] =

∫ ∞
0

log p(yi, γij |wj , xi, yi)p(γij |xi, w(t)
j , yi)dγij

=

∫ ∞
0

log[
1√

2πγij
exp(−

(1 + γij − yiwTj xi)2

2γij
)]p(γij |xi, w(t)

j , yi)dγij

Here,

log[
1√

2πγij
exp(−

(1 + γij − yiwTj xi)2

2γij
)] =

−1

2
log 2π − 1

2
log γij −

(1 + γij)
2

2γij
−

(yiw
T
j xi)

2

2γij
+
yiw

T
j xi(1 + γij)

γij

We only care about the terms involving wj , that is, only the last two terms. Therefore, we only care about

the expectation E[ 1
γij

] = |1 − yixTi w
(t)
j |−1 = τ−1

ij [15]. Therefore, the E[log p(yi, γij |xi, θe, zij = 1)] can be

replaced by
−(yiw

T
j xi)

2+2yiw
T
j xi

2τij
+ 2yiw

T
j xi in (31) to get the final objective (note we are ignoring the terms

not involving wj). Replacing the appropriate expectations in (31), the final objective for the problem is:

L(Θ,Θ(t)) = log p(Θ) +

N∑
i=1

K∑
j=1

ηij

[
log

exp(vTj xi)∑K
l=1 exp(vTl xi)

−
(yiw

T
j xi)

2 − 2yiw
T
j xi

2τij
+ 2yiw

T
j xi

]
(33)

We maximize this objective, that is, Θ(t+1) = argmaxΘ L(Θ,Θ(t)). Now, assume a zero mean gaussian
prior for weight vectors of both softmax gating and expert weight vectors, that is, p(wi) ∼ N (0, λ−1I) and

p(vi) ∼ N (0, β−1I). Note, ∂ log p(wi)
∂wi

= −λwi and similarly, ∂ log p(vi)
∂vi

= −βvi. Now, take derivatives of the
objective L with respect to wj , vj . Therefore,

∂L(Θ,Θ(t))

∂wj
= 0

⇒ (λwj +

N∑
i=1

ηij
τij

(wTj xi)xi) =

N∑
i=1

ηij(
yixi
τij

+ yixi) (34)

⇒ wj = (XTAjX + λI)−1(

N∑
i=1

ηij
τij + 1

τij
yixi) (35)
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where X represents the data matrix and Aj = diag(
η1j
τ1j
, . . .

ηNj

τNj
). As expected, we get a closed form update for

mixture of Bayesian SVMs. However, we cannot get a closed form update for the softmax gating parameters,
which needs to resort to iterative update methods. If using gradient descent, the following gradient is used:

∂L(Θ,Θ(t))

∂vj
= −βvj +

N∑
i=1

ηijxi −
N∑
i=1

K∑
j=1

ηij
∂ log

∑K
l=1 exp(vTl xi)

∂vj

=

N∑
i=1

[
ηij −

exp(vTj xi)∑K
l=1 exp(vTl xi)

]
xi − βvj (36)

A.2 Towards Closed Form Updates

Two approaches are discussed which will allow closed form updates for all the parameters of the model. The
first approach changes the gating network from a discriminative softmax to a generative network [23], while
the second approach uses the ‘Polya-Gamma Data Augmentation’ for the softmax weight vectors [14,18].

A.2.1 Generative Gating Networks

The results derived in this section borrows some results from [23], and the previous section. We wish to
maximize Elog p(γ,z|Θ(t),D)[p(y, x, γ, z|Θ)] with respect to Θ. Here,

log p(y, x, γ, z|Θ) =

N∑
i=1

K∑
j=1

1[zij = 1]
(

log p(yi, γij |xi, wj) + logαj + log p(xi|θg, zij = 1)
)

⇒ E[log p(y, x, γ, z|Θ)] =

N∑
i=1

K∑
j=1

E[zij ]
(
E[log p(yi, γij |xi, wj)] + logαj + log p(xi|θg, zij = 1)

)
(37)

Now,

E[zij ] = p(zij = 1|xi, yi,Θ(t))

∝ p(yi|xi, zij = 1,Θ(t))p(xi|Θ(t), zij = 1)p(zij = 1|Θ(t))

∝ exp(−2 max(0, 1− yixTi w
(t)
j ))N (xi|µ(t)

j ,Σ
(t)
j )α

(t)
j

=
exp(−2 max(0, 1− yixTi w

(t)
j ))N (xi|µ(t)

j ,Σ
(t)
j )α

(t)
j∑K

l=1 exp(−2 max(0, 1− yixTi w
(t)
l ))N (xi|µ(t)

l ,Σ
(t)
l )α

(t)
l

= η
(t)
ij

The other expectation remains the same from the previous section. We can introduce a prior distribution on
all the parameters to get a MAP estimate. The update for the experts remain the same (assuming the same
gaussian prior on the weights). Referring to (35):

w
(t+1)
j = (XTA

(t)
j X + λI)−1(

N∑
i=1

η
(t)
ij

τ
(t)
ij + 1

τ
(t)
ij

yixi)

The updates for the parameters of the gating network are borrowed from [23]. The results do not assume any
prior on the gating network parameters (which can be easily introduced). Note that there is an additional

constraint that
∑N
j=1 αj = 1. The updates are as follows:

α
(t+1)
j =

∑N
i=1 η

(t)
ij

N
=
Nj
N

µ
(t+1)
j =

∑N
i=1 η

(t)
ij xi

Nj

Σ
(t+1)
j =

∑N
i=1 η

(t)
ij (xi − µ(t)

j )(xi − µ(t)
j )T

Nj

where Nj =
∑N
i=1 η

(t)
ij . Thus, we get closed form updates in both the E and M steps.

13



A.2.2 Polya-Gamma Data Augmentation

Polya-Gamma augmentation is discussed in detail [14, 18]. For every example and for every weight vector,
another latent variables βij ∼ PG(1, 0) is augmented. Here, PG(1, 0) represents the Polya-Gamma distri-
bution, and each of the K softmax weight vectors get an augmented latent variable for each of the example
(that is NK latent variables). For simplicity of notation, we only consider the MLE optimization under EM
(this can be easily converted to MAP estimation). We want to maximize E[log p(y, γ, z, β|Θ, X)], where the
expectation is with respect to p(γ, β, z|Θ(t), X, y).

log p(y, γ, β, z|Θ, X) =

N∑
i=1

K∑
j=1

1[zij = 1] log p(yi, zij = 1, βi, γij |Θ, xi)

=

N∑
i=1

K∑
j=1

1[zij = 1]
(

log p(yi, γij |Θ, xi, zij = 1) + log p(βij , zij = 1|Θ, xi)
)

⇒ E[log p(y, γ, β, z|Θ, X)] =

N∑
i=1

K∑
j=1

E[zij ]
(
E[log p(yi, γij |Θ, xi, zij = 1)] + E[log p(βij , zij = 1|Θ, xi)]

)
(38)

We have factorized the ‘Expectation of a Product’ into a ‘Product of Expectation’, that is

E[1[zij = 1] log p(yi, γij |Θ, xi, zij = 1)] = E[zij ]E[log p(yi, γij |Θ, xi, zij = 1)] (39)

This, in general, is incorrect. But, (39) has been used in all the EM derivations carried out above (the factors
are slightly different). The justification for this step is as follows:

E[1[zij = 1] log p(yi, γij |Θ, xi, zij = 1)] =

∫
1[zij = 1] log p(yi, γij |wj , xi, zij = 1)p(γij , βi, zi|Θ(t), X, y)dγijdβidzi

=

∫
1[zij = 1] log p(yi, γij |wj , xi, zij = 1)p(γij , zi|Θ(t), X, y)dγijdzi

=

∫
p(zij = 1|Θ(t), xi, yi) log p(yi, γij |wj , xi, zij = 1)p(γij |Θ(t), xi, yi, zij = 1)dγij

= E[zij ]E[log p(yi, γij |Θ, xi, zij = 1)]

The other expectation factorizations (carried out in this and previous derivations) can be similarly justified.
This factorization is possible because of the use of the indicator function. Now, let’s consider the softmax
without augmentation, that is

p(zij = 1|θg, xi) =
exp(xTi vj)∑K
l=1 exp(xTi vl)

=
exp(xTi vj − log

∑K
l=1,l 6=j exp(xTi vl))

1 + exp(xTi vj − log
∑K
l=1,l 6=j exp(xTi vl))

=
exp(ψij)

1 + exp(ψij)

Here, ψij = xTi vj − log
∑K
l=1,l 6=j exp(xTi vl). Using augmentation results from [18], we get:

log p(zij = 1|θg, xi, βij) ∝ log[exp(
ψij
2

) exp(−βij
ψ2
ij

2
)]

∝ ψij
2
− βij

ψ2
ij

2

Here, log p(βi|θg, xi) = log p(βi) is ignored because it does not depend on any parameters. Therefore, the
final objective can be written as

L(Θ,Θ(t)) =

N∑
i=1

K∑
j=1

ηij

(
E[log p(yi, γij |Θ, xi, zij = 1)] +

1

2
ψij − E[βij ]

ψ2
ij

2

)
The discussion from the first section applies directly over here. The results (32) and (35) are directly applicable

in this derivation. Now, β
(t)
ij = E[βij ] = 1

2ψ
(t)
ij

tanhψ
(t)
ij [18]. The coupling of parameters mandates the usage
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of Expectation Conditional Maximization (ECM), when maximizing with respect to vj [18]. In particular,
when maximizing with respect to vj , we assume vl, l 6= j to be fixed at their ‘most recent estimates’ (not

necessarily v
(t)
l , as we would iterate over vk from k = 2 to k = K). For identifiability, v1 is fixed at [0, 0 . . . 0]T

throughout iterations. Therefore,

∂L
∂vj

=

N∑
i=1

ηij

(1

2
xi − β(t)

ij (xTi vj − log

K∑
l=1,l 6=j

exp(xTi v̂l))xi

)
= 0

N∑
i=1

ηij(
1

2
+ β

(t)
ij log

K∑
l=1,l 6=j

exp(xTi v̂l))xi =
( N∑
i=1

β
(t)
ij ηijxix

T
i

)
vj

⇒ v
(t+1)
j = (XTΩjX)−1XTκj (40)

where,

κj = [η1j(
1

2
+ β

(t)
1j log

N∑
l=1,l 6=j

exp(xT1 v̂l)), . . . , ηNj(
1

2
+ β

(t)
Nj log

N∑
l=1,l 6=j

exp(xTN v̂l))]
T (41)

Ωj = diag(β
(t)
1j η1j , . . . β

(t)
NjηNj) (42)

As is clear, we have closed form updates for all steps. Thus, the use of Polya-Gamma augmentation helps us
achieve the necessary goals of closed form updates, significantly reducing the number of paramaters.
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